Learned D-AMP: Principled Neural Network based Compressive Image Recovery
نویسندگان
چکیده
Compressive image recovery is a challenging problem that requires fast and accurate algorithms. Recently, neural networks have been applied to this problem with promising results. By exploiting massively parallel GPU processing architectures and oodles of training data, they can run orders of magnitude faster than existing techniques. However, these methods are largely unprincipled black boxes that are difficult to train and often-times specific to a single measurement matrix. It was recently demonstrated that iterative sparse-signal-recovery algorithms can be “unrolled” to form interpretable deep networks. Taking inspiration from this work, we develop a novel neural network architecture that mimics the behavior of the denoising-based approximate message passing (D-AMP) algorithm. We call this new network Learned D-AMP (LDAMP). The LDAMP network is easy to train, can be applied to a variety of different measurement matrices, and comes with a state-evolution heuristic that accurately predicts its performance. Most importantly, it outperforms the state-of-the-art BM3D-AMP and NLR-CS algorithms in terms of both accuracy and run time. At high resolutions, and when used with sensing matrices that have fast implementations, LDAMP runs over 50× faster than BM3D-AMP and hundreds of times faster than NLR-CS.
منابع مشابه
Learned D-AMP: A Principled CNN-based Compressive Image Recovery Algorithm
Compressive image recovery is a challenging problem that requires fast and accurate algorithms. Recently, neural networks have been applied to this problem with promising results. By exploiting massively parallel GPU processing architectures and oodles of training data, they are able to run orders of magnitude faster than existing methods. Unfortunately, these methods are difficult to train, of...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملInterpretable Recurrent Neural Networks Using Sequential Sparse Recovery
Recurrent neural networks (RNNs) are powerful and effective for processing sequential data. However, RNNs are usually considered “black box” models whose internal structure and learned parameters are not interpretable. In this paper, we propose an interpretable RNN based on the sequential iterative soft-thresholding algorithm (SISTA) for solving the sequential sparse recovery problem, which mod...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملDenoising based Vector Approximate Message Passing
The D-AMP methodology, recently proposed by Metzler, Maleki, and Baraniuk, allows one to plug in sophisticated denoisers like BM3D into the AMP algorithm to achieve state-of-the-art compressive image recovery. But AMP diverges with small deviations from the i.i.d.-Gaussian assumption on the measurement matrix. Recently, the VAMP algorithm has been proposed to fix this problem. In this work, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017